POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Metody numeryczne - Numerical methods

Course		
Field of study		Year/Semester
Teleinformatics		1/1
Area of study (specialization)		Profile of study
		general academic
Level of study		Course offered in
second-cycle studies		Polish
Form of study		Requirements
full-time		compulsory
Number of hours		
Lecture	Laboratory classes	Other (e.g. online)
15	0	
Tutorials	Projects/seminars	
15	0/0	

Number of credit points

2

Lecturers

 Responsible for the course/lecturer:
 Responsible for the course/lecturer:

 dr hab. inż. Anna Domańska
 Institute of Multimedia Telecommunications

 anna.domanska@put.poznan.pl
 61 665 3865

Prerequisites

The knowledge of the algebra and the mathematical analysis and probability theory and elements of the mathematical statistics within the range first-cycle studies on technical universities.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Acquaintedness with concepts and theorems from the range of numerical methods. Recognitio

Acquaintedness with concepts and theorems from the range of numerical methods. Recognition of numerical algorithms of solution of typical problems from the algebra and the mathematical analysis. Preparation to the practical application of recognized methods to the problem solving from the range of the electronics and telecommunications.

Course-related learning outcomes

Knowledge

1. Knowledge from the range of numerical methods finding use in the electronics and telecommunications.

2. Orderly and underpinned with the theory the knowledge about rules and limitations of the problem solving with numerical methods.

Skills

1. Recognition of problems, in this of practical issues which can be solved algorithmically.

 Selection of proper numerical methods of the problem solving from the range of the electronics and telecommunications.

3. Interpreting of obtained results of calculations with the regard of conditionings of calculations realized with numerical methods.

Social competences

1. Consciousness of the necessity of the professional approach to the resolution of technical problems and undertakings of the responsibility for proposed solutions.

2. Understanding of the meaning of mathematics and its uses in the solution of modern engineering problems.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Base to the credit of the lecture is the obtainment of the positive evaluation from the quiz (theory) at the end of the semester.

Base to the credit of tutorials is the obtainment of the positive evaluation from the test at the end of the semester and from the homeworks.

Programme content

1. Computer arithmetic, consequences of the floating point representation of numbers. Analysis of the accuracy of numerical algorithms. Conditioning numerical tasks. Stability, correctness, computational complexity of the algorithm.

2. Solving linear systems of algebraic equations. Direct methods (Gaussian elimination, Jordan elimination, LU matrix factorization). Iterative methods (Jacobi's, Gauss - Seidel).

3. Solving nonlinear equation. Roots of polynomials. Bisection method, regula falsi method (false-position method), secant method, tangent method (Newton's or Newton's-Raphson's).

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

4. Interpolation - polynomial methods, spline function methods.

5. Numerical integration - quadrature-based methods (Newton-Cotes, Gauss), Monte-Carlo methods.

1. Computer arithmetic, consequences of the floating point representation of numbers. Analysis of the accuracy of numerical algorithms. Conditioning numerical tasks. Stability, correctness, computational complexity of the algorithm.

2. Solving linear systems of algebraic equations. Direct methods (Gaussian elimination, Jordan elimination, LU matrix factorization). Iterative methods (Jacobi's, Gauss - Seidel).

3. Solving nonlinear equation. Roots of polynomials. Bisection method, regula falsi method (falseposition method), secant method, tangent method (Newton's or Newton's-Raphson's).

4. Interpolation - polynomial methods, spline function methods.

5. Numerical integration - quadrature-based methods (Newton-Cotes, Gauss), Monte-Carlo methods.

Teaching methods

Lectures - in form of presentations illustrated with examples. The stage-check of the understanding of the content across the discussion.

Tutorials - tasks illustrative lecture-contents. Every task is preceded an information of which issue concerns and finished with conclusions harking back to of the theory.

Bibliography

Basic

1. Dryja M., Jankowscy J. i M., Przegląd metod i algorytmów numerycznych, Cz. II, Wyd. 2, WNT, Warszawa 1988

2. Fortuna Z., Macukow B., Wąsowski J., "Metody numeryczne", WNT, Warszawa 2021

3. Jankowscy J. i M., Przegląd metod i algorytmów numerycznych, Cz. I, Wyd. 2, WNT, Warszawa 1988

Additional

- 1. Kincaid D., Cheney W.: Analiza numeryczna, WNT, Warszawa 2006
- 2. Stoer J., Bulirsch R., "Wstęp do analizy numerycznej", PWN, Warszawa 1987
- 3. Ralston A., "Wstęp do analizy numerycznej", PWN, Warszawa 1983

Breakdown of average student's workload

	Hours	ECTS
Total workload	56	2.0
Classes requiring direct contact with the teacher	30	1.0
Student's own work (preparation for tests, preparation for tutorials,	26	1.0
literature studies)	20	1.0